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J. Phys. A: Math. Gen. 20 (1987) L923-L927. Printed in the U K  

LElTER TO THE EDITOR 

On the number of spanning trees for the 3~ simple cubic 
lattice t. 

Anders Rosengren 
Condensed Matter Theory Group, Department of Physics, Box 530, Uppsala University, 
S-751 21 Uppsala, Sweden 

Received 13 July 1987 

Abstract. The number of spanning trees on a large lattice is evaluated exactly for the 3D 

simple cubic lattice graph. Similarities to the evaluation of the lattice Green function are 
pointed out. 

If G is a connected graph, then a spanning tree in G is a spanning subgraph of G, 
which contains no circuits. That a subgraph is spanning means that its vertex set is 
the same as that of G. For a regular lattice graph of N sites, the number of spanning 
trees T ( N )  behaves as exp(zN) for large N, i.e. 

This limit was evaluated by Wu (1977) for three planar lattice graphs, namely for the 
square, triangular and honeycomb lattice graphs. Thereby Wu used the partition 
function of ice-type models on the related medial lattices. (Note that the medial lattices 
also are planar.) The method used in this letter enables the calculation of z also when 
the lattice graph is not planar and the method used by Wu is therefore not applicable. 
Here we calculate z for the simple cubic lattice graph. We also note the similarities 
in calculating the number of spanning trees on a lattice and in calculating the lattice 
Green function. 

From graph theory it is known that for a connected graph 

T ( N )  = N - '  n p (2) 

where the product runs through all non-zero eigenvalues p of the matrix C = A - A  
where A is the adjacency matrix and A is the diagonal matrix, and where each diagonal 
entry is the valency of the corresponding vertex (CvetkoviC et a1 1980). Furthermore, 
the spectrum of the graph of an n, x n, x n3 cubic lattice is known (see, e.g., CvetkoviC 
et a1 1980), and consists of all numbers of the form 

2 j = ,  c o s p  n ,+l  .) 
t This work was supported by the Swedish Natural Science Research Council. 

0305-4470/87/ 140923 + 05$02.50 @ 1987 IOP Publishing Ltd L923 



L924 Letter to the Editor 

where v, = 1,.  . . , n,. If instead we introduce periodic boundary conditions, the spec- 
trum is given by all numbers of the form 

2 c cos - vj . 
, = I  (3 

This together with (2) gives 

z =  lim N-’ ln  T ( N ) = ,  1; [: 1: ln[2(3 -cos a -cos p -cos y ) ]  d a  d p  d y 

irrespective of the boundary conditions used. We would here like to point out 
similarities to the calculation of the lattice Green function, a function frequently 
encountered in the study of lattice statistics. For the simple cubic lattice it is defined 

min, n , - x  lr 

(3) 

by 
cos la cos mp cos n y  

G(t ;  I ,  m ,  n ) = y  d a  d p  dY (4) 
7r I: 5: Jo t-cos a -cos p -cos y 

where I ,  m and n are integers and t is a parameter (Maradudin et a1 1960). Much 
effort has been spent to evaluate this integral. G(3; 0, 0,O) is one of the famous Watson 
integrals (Watson 1939). Watson’s result seems to have been unnoticed by some 
members of the physics community as subsequently published numerical tabulations 
of G(3; 1, m, n )  reveal. Joyce (1972) showed that G (  t ,  0, 0,O) could be expressed as a 
product of two complete elliptic integrals of the first kind. A few years later Morita 
(1975) showed that the function G(  t ;  I, m, n )  for an arbitrary lattice site ( I ,  m, n )  could 
be expressed in terms of G (  t ;  O,O, O), G ( t ;  2,0,0)  and G ( t ;  3,0,0) only. Soon 
thereafter Horiguchi and Morita (1975) were able to obtain also G(r;  2,0,0) and 
G( t ;  3,0,0)  in closed forms, containing sums of products of complete elliptic integrals 
of the first and second kind. If we define 

F ( t ;  I, m, n)=? 1; j; j; cos la cos mp cos n y 
lr 

x In( t -cos a -cos p -cos y )  d a  d p  d y  

we obtain 

z = In 2 + F(3; 0, 0,O). 

On the other hand 

dF( t ;  I, my n )  
dt  

= G( t ;  1, m, n )  (7) 

so in principle F ( t ;  1, m, n )  could be obtained by integration. However, Horiguchi 
and Morita (1975) derived a simple recurrence relation, which after integration with 
respect to t gives 

(8)  
This relation can therefore be used to obtain F ( t ;  I, m, n )  for all values of I, m and n 
except for I = m = n = 0, exactly the case of interest here! However, as will be shown 
below 

F ( t ;  1, m, n ) = ( G ( t ;  1+1, m, n ) - G ( t ;  1-1, m, n))/21. 

“ : 1  “ 1  
f ( n )  F(3; 1,OYO) = - c - F(3 ;0 ,0 ,0 )= ln3-  c - f ( n )  

2n  2 n  - 1 
( 9 )  
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where 

so F ( 3 ;  ", 0,O) could be evaluated by means o F ( 3 ;  1 ,0 ,0 )  and 
an  estimate of the error obtained by replacing the factor 2n by the factor 2n - 1. We 
will, however, proceed in a more direct way to evaluate F ( 3 ;  0, 0,O). Firstly we write 

wn 1 
72 , ,=I  n 3 

F ( 3 ;  O,O, 0 )  = In 3 -- [:[: I T  f - T d a  d P d y  

where w = A + B + C, A = cos a, B = cos /3 and C = cos y. Then we make a trinomial 
expansion of W" and note that only even powers of A, B and C contribute to the 
integral. Further we use the relation 

( 2 j -  l ) ! !  
( 2 j ) ! !  

77. [: A" d a  = 

These steps together give 

the known value o 

This expression can be further simplified by using 

k=O i ( ; ) '=(T)  
which gives 

~ ( 3 ;  0, 0, 0) = In 3 - - - 

We note that the summand of the inner sum Z has a narrow maximum of width = 1 / d n  
at k = ko = 3 n and first rewrite I; by means of Stirling's formula 

Z =  k=O i (;)'(;)=Z,+z,+... 

where 

Then a Taylor expansion is made around k = k o ,  giving 

z = xI l  +Il2 + zl3 + Zzl + O( n-3)  

where 

Then we use that 
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where 

qn(x)=(1 -x)2Pn((1+x)/(1-x))  (21) 

and Pn(x)  are Legendre polynomials (Riordan 1968). Further, if the asymptotic 
expansion of Pn(x)  for large n is used (Gradshteyn and Ryzhik 1965), one obtains 

3 1  49 1 
4 n a  

The sums X 1 2  and X I 3  are developed in a similar fashion and in total it is found for 
X that 

This means that 

a? 

~ ( 3 ;  0, 0, 0) = In 3 - a,, 
n = l  

where for large n 

3 J 5  3 1  
a n  = 8aJ;;ns/2 [ 1 - 8  ;+o(+)]. 

We now rewrite (24) as 

F ( 3 ;  0, 0,O) = In 3 - So - SI (26) 

where 

n = l  n = N o  

Equations (25) and (27) give 

where 

and A = 3 4 3 / ( 8 d a )  and B = -3A/8. We now use the Riemann zeta function to 
express SI, and S12  as 

No- I No- 1 

SI, =5(5/2)-  n-5’2 SI2=5(7/2) -  K7” (30) 
n = l  n = l  

where the sums are performed simultaneously with the sum S o ,  and where C(5/2) and 
5(7/2) are taken from Gram (1925). In doing so, we obtain that z = In 2 +  F(3;  0, 0,O) = 
1.673 3893. 
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